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1 Induction warmup

Problem 1: (Sum of the first n integers) Prove by induction that

1 + 2 + · · ·+ n =
1

2
n(n+ 1).

Solution: The base case n = 1 is clear, as 1 = 1
2
· 1 · (1 + 1).

Suppose that 1 + 2 + · · ·+ n = 1
2
n(n+ 1). Then

1 + 2 + · · ·+ n+ (n+ 1) =
1

2
n(n+ 1) + (n+ 1)

=
1

2

(
n(n+ 1) + 2(n+ 1)

)
=

1

2

(
(n+ 2)(n+ 1)

)
Problem 2: (Geometric series) Prove by induction that

1 + r + r2 + · · ·+ rn =
1− r(n+1)

1− r
,

where r 6= 1

Solution: The base case n = 0 is immediate, as 1 = (1 − r0+1)/(1 − r), so long as
r 6= 1.

Suppose that 1 + r+ · · ·+ rn = (1− rn+1)/(1− r). We add to both sides and simplify

1 + r + · · ·+ rn + rn+1 =
1− rn+1

1− r
+ rn+1

=
1− rn+1 + rn+1(1− r)

1− r

=
1− rn+2

1− r

1



Remark: One usually thinks of this more conceptually in the following way: if x = 1+
r+· · ·+rn, then rx = r+r2+· · ·+rn+1, and rx−x = rn+1−1 and x = (rn+1−1)/(r−1).

Problem 3: Correction - show that 4n + 5 is divisible by 3

Solution: If n = 0 we get 40 + 5 = 6, which is divisible by 3.

Now suppose that 4n + 5 is divisible by 3. Then

4n+1 + 5 = 4 · 4n + 4 · 5− 35̇

= 4(4n + 5)− 15

which is a difference of integers which are divisible by 3, hence is itself divisible by 3.
This completes the induction.

Remark: Previously, the exercise was stated with a minus instead of a plus: show that
4n−5 is divisible by 3. This is false, since for example it fails when n = 1, 2 etc. While
I was thinking about this, I realized that the an = 4n − 5 has some cool properties.
Try proving the following for fun (in order of increasing difficulty) for each n > 0: an
is even, 5 does not divide an, 3 does not divide an, and finally gcd(an, an+1) = 1.

Problem 4: Show that 4n + 15n− 1 is divisible by 9 for all n.

Solution: The base case works: 9 divides 4 + 15− 1 = 18.

Suppose that 9 divides A = 4n + 15n− 1. Then of course 9 divides

4(4n + 15n− 1) = 4n+1 + 60n− 4

= 4n+1 + 15n− 1 + 45n− 3 + 15− 15

=
(
4n+1 + 15(n+ 1)− 1

)
+ 45n− 18

since also 9 divides 45n− 18, the result follows.

Remark: In light of the correction to Problem 3, here is another solution. Notice that
15n− 6 = 3(5n− 2) is divisible by 3 as is 4n + 5 (see Problem 3). Hence, their sum
is also divisible by 3

(4n + 5) + (15n− 6) = 4n + 15n− 1

which is the desired conclusion.

Problem 5: Prove that n! > 2n for all n ≥ 4



Solution: If n = 4, then 4! = 24 > 24 = 16.

Suppose for induction that n! > 2n for some n ≥ 4. Then (n + 1) > 2, which in
conjunction with the supposed inequality says that (n+ 1)n! > 2 · 2n, i.e. (n+ 1)! >
2n+1 as desired.

Problem 6: Let a and b be two distinct integers and n any positive integer. Prove
that an − bn is divisible by (a− b).

Solution: The identity in the hint allows one to use induction. The case n = 1 is
clear.

For induction, suppose that (a − b) divides an − bn. Then we see that a − b divides
both (an+ bn)(a− b) and (an− bn)(a+ b). According to the hint, we have that (a− b)
divides 2(an+1 − bn+1) =

[
(an + bn)(a− b) + (an − bn)(a+ b)

]
. Now if (a− b) is odd,

we are done, as we can divide a factor of 2 from the equation

(a− b)d = 2(an+1 − bn+1)

to show that a − b divides an+1 − bn+1. On the other hand, if (a − b) is even, then
also a + b and an + bn are even. [Write b = a + 2k, then a + b = 2a + 2k and
an + bn = an + an + nan−12 + · · · + 2n = 2an + 2(nan + · · · + 2n−1).] Therefore the
hint can be re-written as

an+1 − bn+1 =

(
an + bn

2

)
(a− b) + (an − bn)

(
a+ b

2

)
= α(a− b) + (an − bn)β

and for the same reasons as before, (a− b) divides the right hand side.

Hint: Use the identity

(an+1 − bn+1) =
1

2
((an + bn)(a− b) + (an − bn)(a+ b)).

2 Induction on steroids

2.1 Peyam Tabrizian

Problem 1:

Show by induction on n that the determinant of an upper-triangular n× n matrix A
equals to the product of its diagonal entries.

Base case: If n = 1, then any 1 × 1 upper-triangular matrix A is of the form
[
a11
]
,

and then:



det(A) = a11 =
1∏
i=1

aii
1

Induction step: Suppose the result holds for any n× n upper-triangular matrix, and
let A be an (n+ 1)× (n+ 1) upper-triangular matrix, of the form:

A =


a11 ? · · · ?
0 a22 ? ?

0 0
. . .

...
0 · · · · · · a(n+1)(n+1)


Now expanding det(A) along the first column of A, we get:

det(A) = a11A = a11det


a22 ? · · · ?
0 a33 ? ?

0 0
. . .

...
0 · · · · · · a(n+1)(n+1)

 = a11det(B)

where:

B =


a22 ? · · · ?
0 a33 ? ?

0 0
. . .

...
0 · · · · · · a(n+1)(n+1)


However, B is an n×n upper-triangular matrix, so by induction hypothesis, we have:

det(B) = a22 · · · a(n+1)(n+1)

And therefore:

det(A) = a11det(B) = a11
(
a22 · · · a(n+1)(n+1)

)
= a11 · · · a(n+1)(n+1) =

n+1∏
i=1

aii

Hence, by induction, we’re done �

1where in general,
∏n
i=1 aii is defined to be a11 · · · ann



Note: See the footnote below for another cool way of doing this, without induction.
Thank you Dan Sparks for suggesting this alternate approach! 2

Problem 2:

If F = C, show that the determinant of a linear operator T equals to the product of
its eigenvalues, including multiplicities

Note: You may use the fact that the determinant of T equals to the determinant of
M(T ), which is independent of the basis of V that you choose for M(T )3 .

By Schur’s theorem (Theorem 5.13), there exists a basis (v1, · · · , vn) of V such that
the matrix M(T ) with respect to that basis is upper-triangular.
Moreover, by Prop 5.18, the entries on the diagonal M(T ) are the eigenvalues of T
(including multiplicities), that is:

M(T ) =

λ1 · · · ?

0
. . .

...
0 · · · λn


(where the λi are not necessarily distinct)

2For this, we’ll use the definition det(A) =
∑
σ∈Sn

sign(σ)aσ(1)1 · · · aσ(n)n given on page 229. Sn
is just the set of permutations/bijective functions from {1, · · · , n} to itself.

First of all, there’s only one permutation σ with the property that σ(i) ≥ i, namely the identity
map (Proof: Use contradiction and the pigeonhole priciple)!

This means that for any σ other than the identity map, we have at least one i such that σ(i) < i.
However, since A is upper-triangular, we get aσ(i)i = 0 for this i, which means that for any σ other
than the identity, we get sign(σ)aσ(1)1 · · · aσ(n)n = 0. On the other hand, for for σ = identity (which
has sign 1), we get sign(σ)aσ(1)1 · · · aσ(n)n = a11 · · · ann.

Since any σ ∈ Sn is either not the identity or the identity, using the definition of the determinant,
we get det(A) = a11 · · · ann

3In case you’re curious, here’s a proof of this fact: In Math 54, you define det(T ) to be det(M(T ))
with respect to any basis of V . So all you have to show is that this definition makes sense, i.e. that
is independent of the choice of basis. So suppose M(T ) and M′(T ) are the matrices of T with
respect to two different bases of V . We want to show det(M(T )) = det(M′(T )).

But, by Theorem 10.3, we have M(T ) = PM′(T )P−1 for some invertible matrix P . But then
you can show, using Math 54-techniques, that det(AB) = det(A)det(B), and so det(M(T )) =
det(PM′(T )P−1) = det(P )det(M′(T )) 1

det(P ) = det(M′(T )), which is what you wanted to show



However, since M(T ) is upper-triangular by Problem 1, we have:

det(M(T )) = λ1 · · ·λn
And hence, by the note above, we get:

det(T ) = det(M(T )) = λ1 · · ·λn =
n∏
i=1

λi

That is, det(T ) is the product of the eigenvalues of T (counting multiplicities) �

Problem 3:

(a) Do there exist linear operators S and T ∈ L(V ) such that TS − ST = I ?

NO , because if there were such linear operators S and T , then we would have:

Tr(TS − ST ) = Tr(I)

Tr(TS)− Tr(ST ) = n

Tr(TS)− Tr(TS) = n

0 = n

Where n is dim(V ), and we get a contradiction4 ⇒⇐

(b) Is there a 3× 3 matrix A with A2 = −I ?

In general NO , because if F = R and if there were such a matrix A, then we
would have:

det
(
A2
)

= (det(A))2 ≥ 0

Yet, on the other hand:

det
(
A2
)

= det(−I) = −1 < 0

4unless V = {0}, but don’t worry about this case



Which is a contradiction ⇒⇐
But if F = C, then YES , because the following matrix satisfies A2 = −I:

A =

i 0 0
0 i 0
0 0 i



Problem 4:

Without using any integrals, calculate the volume of the ellipsoid

E =

{
(x, y, z) ∈ R3 | x

2

a2
+
y2

b2
+
z2

c2
≤ 1

}
Where a, b, c are nonnegative real numbers.

Define the following linear transformation T ∈ L(R3) by5

T (1, 0, 0) = (a, 0, 0)

T (0, 1, 0) = (0, b, 0)

T (0, 0, 1) = (0, 0, c)

Then by the linear extension lemma, there exists such a linear transformation T , and
moreover, you can check that T (B) = E, where B is the unit ball in R3.

Moreover, we have:

M(T ) =

a 0 0
0 b 0
0 0 c


And so det(T ) = det(M(T )) = abc.

Finally, we use the cool formula:

V ol(T (B)) = det(T )V ol(B)

5You can obtain this guess if you draw the unit ball in R3 and the ellipsoid E, and ‘match’ the
principal axes



to conclude:

V ol(E) = V ol(T (B)) = det(T )V ol(B) = abc
4

3
π(1)3 =

4π

3
abc

TA-DAAA!!!

2.2 Daniel Sparks

Preliminary: If a, b are natural numbers at least 1, then we say a divides b, and we
write a|b, if there exists a third natural number d such that b = da. You may use the
following facts:

• If m|n and m′|n′, then mm′|nn′.

• If (ab)|c then a|c.

• If p is prime, and p|(mn) then p|m or p|n.

You may also find useful the formulas

• (Geometric series)
xr − 1

x− 1
= xr−1 + xr−2 + · · ·+ 1.

• (Difference of squares) (a2 − b2) = (a− b)(a+ b).

Part 1: Prove that 3 · 2n+2 divides (52n − 1) for all n ≥ 1.

Solution: The base case n = 1 is clear: 3 · 21+2 = 3 · 8 = 24 which equals (and
therefore, of course, divides) the integer (521 − 1).

Now suppose the result is true for n. That is, suppose that

3 · 2n+2
∣∣(52n − 1)

Write 52n+1−1 = 52·2n−1 = (52n)2−1 = (52n−1)(52n+1) via the difference of squares
formula (a2− b2) = (a− b)(a+ b). Now, since 52n and 1 are both odd numbers, their
sum 52n + 1 is even, i.e. divisible by 2. Combining this with the inductive hypothesis
completes the induction:

3 · 2n+2
∣∣(52n − 1) and 2

∣∣(52n + 1) ⇒ (3 · 2n+2 · 2)
∣∣((52n − 1)(52n + 1)

)
= 52n+1 − 1

Rewriting this, we have 3 · 2n+3
∣∣(52n+1 − 1), completing the induction.

Part 2: Let p be a prime, and let n, a, b be natural numbers at least 1. Prove that
if pn|(ab), and p 6 |b, then pn|a.



Solution: The induction is on n. The base case, n = 1, is exactly the hint which
you can take for granted: p|ab⇒ p|a or p|b. Since the latter disjunct cannot be true
(we suppose b is not divisible by p) then the former must be: p = p1 divides a.

So suppose the result is true for n, and suppose that pn+1|ab with b not divisible by p.
Then in particular pn|ab with b not divisible by p, so the inductive hypothesis implies
that pn|a. We can write a = pnd′. Now write out our supposition and divide by pn:

(pn+1)(d) = (a)(b)

(pn+1)(d) = (pnd′)(b)

pd = d′b

Thus, p|d′b. The given hint now says that p|d′ or b, but since it cannot divide b by
hypothesis, p|d′. Since pn divides pn and p divides d′, we see that pn+1 = (pn)(p)
divides pnd′ = a completing the induction.

Part 3: Prove that 2n+2 divides (72n−1 + 72n−2 + · · ·+ 7 + 1) for n ≥ 1. Suggestion:
Try making this into a statement more like the one in Problem 1.

Solution: Let’s write S = (72n−1 + 72n−2 + · · · + 7 + 1). First observe that 2n+2

divides S if and only if 6 · 2n+2 = 3 · 2n+3 divides 6S = (7 − 1)S. In other words
6 · 2n+2 · d = 6S for some d if and only if 2n+2 · d′ = S for some d′. (In fact one can
take d = d′.)

So we aim to show that 3 · 2n+3 divides

(7− 1)S = (7− 1)(7n
2−1 + 7n

2−2 + · · ·+ 7 + 1) = (72n − 1)

This is exactly like Problem 1. For induction, the base case n = 1 is clear: 3 · 24 = 48
divides 48 = 721 − 1. So suppose the result is true for n. Then we factor

72n+1 − 1 = (72n + 1)(72n − 1)

Since 72n is odd, 2|(72n + 1). Combining this with the inductive hypothesis, namely
3 · 2n+3

∣∣(72n − 1), we see that 3 · 2n+4
∣∣(72n+1 − 1).

3 Mohammad Safdari

Let A,B be self adjoint operators on a finite dimensional inner product space V such
that AB = BA. Prove, by induction on dimV , that there exists an orthonormal
basis of V whose elements are eigenvectors for both A and B.

Solution: First, I will show you what I consider to be the easier proof, and then show
you how to modify it to use induction. Since A is self-adjoint, whether F = R or C,



A admits an orthonormal basis of eigenvectors. In particular, there is a Jordan style
orthogonal decomposition V =

⊕
λ Vλ where λ ranges over the distinct eigenvalues of

A and Vλ = Null(A − λI). Notice that Vλ is B invariant: if Av = λv then ABv =
BAv = B(λv) = λ(Bv), which is exactly what it means for Bv ∈ Vλ = Null(A− λI).
We will prove in the next paragraph that B

∣∣
Vλ

is self-adjoint. Hence we may take, for

each λ, and orthonormal eigenbasis of Vλ for B
∣∣
Vλ

. Call this basis βλ = (bλ1 , · · · , bλeλ).

Since each bλi ∈ Vλ, the basis βλ is an eigenbasis for each of A,B on Vλ. Upon
concatenating the bases into one basis

⋃
βλ = (bλ11 , · · · , Bλr

eλr
). The vectors are each

of unit length and are each eigenvectors of both A,B. By construction, bλij ⊥ bλk` if
i = k. On the other hand, since V =

⊕
λ Vλ is an orthogonal direct sum, we see that

bλij ⊥ bλk` when i 6= k as well.

The loose string is this: Let U be an invariant subspace of a self-adjoint operator T .
Then T

∣∣
U

is also self-adjoint, where we take as inner product on U the restriction

of 〈·, ·〉 : V × V → F. More generally, (T |U)∗ = (T ∗)
∣∣
U

. To see this, write for any
v, w ∈ U

〈(T |U)v, w〉 = 〈Tv, w〉 = 〈v, T ∗w〉 = 〈v, (T ∗)Uw〉
which verifies that (T ∗)U satisfies the definition of the adjoint of T |U , i.e. (T |U)∗ =
(T ∗)|U . In particular, if T is self-adjoint then (T |U)∗ = (T ∗)|U = T |U as well.

Remark: Now, the only way I have imagined getting induction into the picture
is, after obtaining the orthogonal decomposition V =

⊕
λ Vλ, consider two cases:

either some Vλ = V or not. In the case that Vλ = V , we see that every vector
is an eigenvector for A. Hence any orthonormal eigenbasis of B will do the trick
(notice we don’t even need AB = BA in this case). On the other hand, suppose
that no Vλ = V . Then each Vλ has strictly smaller dimension than V , and so we
can apply the inductive hypothesis to the pair of operators A

∣∣
Vλ

, B
∣∣
Vλ

on Vλ. This
yields orthonormal simultaneous eigenbases on each Vλ which may be concatenated
as above.

4 Lisha Li

There are 20 people in a room, each with either a blue or red hat on their head. Each
person can clearly see the hat on everyone elses head, but cannot see their own. In
fact 8 people have blue hats and 12 have red. The game is played in rounds, and in
each round the people who know the color of their hats raise their hands. The game
proceeds this way an exhausting number of rounds and no one raises their hands.

Then a child wanders into the room and exclaims a blue hat! Eight rounds later all
eight people with blue hats raise their hands.



1. Explain why this happened. i.e. show that if there were k blue hats all k people
would raise their hands in the k-th round.

2. What do you expect to happen in the 9th round?

3. Everyone in the room already knew that there was at least one person had a
blue hat, since everyone could see at least seven blue hats. Then why did the
childs exclamation have any effect?

Solution:

1. Proof by induction. Base case: Suppose k = 1. The person with the blue hat
sees only red hats, and is not sure if there is a blue hat (k = 1) or not (k = 0).
With knowledge that a blue hat exists, the sole blue hat knows that k = 1 and
raises their hand.

Suppose that for k = n, n people raise their hand on the nth round. Consider
the case for k = n + 1. Each person with a blue hat sees n blue hats, and must
gure out if there are n blue hats or n+ 1 blue hats. Assuming themselves to
have red hats, they watch a game which should have k = n blue hats. After
n rounds, when n players dont raise their hands, by the inductive hypothesis,
this player knows this is a game with n + 1 blue hats, and raises their hand the
next round. This holds for every player with a blue hat, and so all raise their
hands at the same time.

Therefore, after k rounds, k players raise their hand, for k 1.

2. In the 9th round, the remaining players raise their hand, knowing they have
red hats. As they saw 8 blue hats, they had been thinking either there are 8
blue hats, or I am wearing a blue hat!. Knowing there to be 8 blue hats induces
knowledge that this player is wearing a red hat.

3. The issue here is common knowledge: A, B have knowledge about fact F if A
knows F , A knows that B knows F , A knows that B knows that A knows F ,
... To see why common knowledge is relevant, consider the case where there are
exactly 3 blue hats on A, B, C. A knows that B and C have blue hats. A even
knows that B knows that C has a blue hat and vice versa. But A does not
know that B knows that C has a blue hat. This is because A does not know
that she has a blue hat, since she only sees 2 blue hats. So now she has no way
of reasoning that if there were only two blue hats then B and C would raise
their hands on the second round - since as far as she knows B doesnt know that
C knows that he has a blue hat and C doesnt know that B knows that she has
a blue hat. So the induction does not work.



When the child says there is a blue hat, it becomes common knowledge that
there is a blue hat. i.e. A knows that B knows that C knows that ... that A
knows that there is at least one blue hat. Now the induction can go through.


